商荣副教授

发布者:王晓玲 发布时间:2021-09-02 浏览次数:2591

商荣副教授


------------------------------------------------------------------------------------------------------

基本信息 Basic information

    名:商荣

    称:副教授

硕导/博导:硕导

最高学位:博士

    位:福建师范大学地理科学学院

------------------------------------------------------------------------------------------------------

联系方式 Contact

通讯地址:福州市上三路32号福建师范大学仓山校区

邮政编码:350007

办公电话:0591-83465214    

电子邮箱:shangrong@fjnu.edu.cn

------------------------------------------------------------------------------------------------------

研究方向 Research Interests

植被遥感与碳中和、遥感大数据、地表变化动态监测

------------------------------------------------------------------------------------------------------

个人履历 Resume

  

2013.09-2018.06 中国科学院大学地理科学与资源研究所理学博士

2009.09-2013.06 武汉大学资源与环境科学学院理学学士

  

2020.12-       福建师范大学地理科学学院副教授

2019.01-2020.08 美国康涅狄格大学资源与环境系博士后

2018.06-2019.01 美国德州理工大学地理系博士后

-------------------------------------------------------------------------------------------------------

个人简介  Brief

商荣,男,博士,武汉人。主要从事植被遥感与碳中和、遥感大数据、地表变化动态监测等方面的研究,包括多源高分辨率遥感数据融合、大尺度地表变化及扰动检测、森林扰动近实时监测、植被扰动与碳循环、全球地表物候反演等。具备有独立处理全球海量高分辨率卫星遥感数据的能力,精通C/C++MATLAB,熟悉Google Earth EngineLinuxPythonR等。至今已发表论文 17 篇,其中 5 篇发表在遥感领域顶级期刊Remote Sensing of Environment上。先后担任过Remote Sensing of Environment》、《ISPRS Journal of Photogrammetry and Remote SensingScience of Remote Sensing等期刊审稿人。

-------------------------------------------------------------------------------------------------------

代表性论文 Selected Publications

1.Shang, R.*, Zhu, Z., Zhang, J., Qiu, S., Yang, Z., Li, T., & Yang, X. (2022). Near-real-time monitoring of land disturbance with harmonized Landsats 7–8 and Sentinel-2 data. Remote Sensing of Environment. 278, 113073.

2.Liu, Yang, Liu, R., Shang, R. (2022). GLOBMAP SWF: a global annual surface water cover frequency dataset during 2000–2020. Earth System Science Data. 14, 4505–4523.

3.Xu, M., Liu, R., Chen, J.M., Liu, Y., Wolanin, A., Croft, H., He, L., Shang, R., Ju, W., Zhang, Y., He, Y., Wang, R. (2022). A 21-year time-series of global leaf chlorophyll content maps from MODIS imagery. IEEE Transactions on Geoscience and Remote Sensing. 60, 1–13.

4.Liu, Ying, Wu, C., Jassal, R.S., Wang, X., Shang, R. (2022). Satellite Observed Land Surface Greening in Summer Controlled by the Precipitation Frequency Rather Than Its Total Over Tibetan Plateau. Earth’s Future. 10.

5.Xu, M., Liu, R., Chen, J.M., Shang, R., Liu, Y., Qi, L., Croft, H., Ju, W., Zhang, Y., He, Y., Qiu, F., Li, J., Lin, Q. (2022). Retrieving global leaf chlorophyll content from MERIS data using a neural network method. ISPRS Journal of Photogrammetry and Remote Sensing. 192, 66–82.

6.Zhang, J., Shang, R.*, Rittenhouse, C., Witharana, C., Zhu, Z. (2021). Evaluating the impacts of models, data density and irregularity on reconstructing and forecasting dense Landsat time series. Science of Remote Sensing. 4, 100023.

7.Qiu, S., Zhu, Z., Shang, R., Crawford, C.J. (2021). Can Landsat 7 preserve its science capability with a drifting orbit? Science of Remote Sensing. 4, 100026.

8.Wang L., Niu, Z., Shang, R.*, Qin, Y., Li, W., Chen, H. (2020). High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data. International Journal of Applied Earth Observations and Geoinformation, 92,102163.

9.Shang, R.*, Zhu, Z. (2019). Harmonizing Landsat 8 and Sentinel-2: A Time-series-based Reflectance Adjustment Approach. Remote Sensing of Environment, 235, 111439.

10. Qiu, S., Lin, Y., Shang, R.*, Zhang, J., Ma, L., Zhu, Z.*. (2019). Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data. Remote Sensing, 11, 51.

11.Xu, M., Liu, R., Chen, J., Liu, Y., Shang, R., Ju, W., Wu, C, Huang, W. (2019). Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach. Remote Sensing of Environment, 224, 560-73.

12. Zuo, L., Liu, R., Liu, Y., Shang, R. (2019). Effect of Mathematical Expression of Vegetation Indices on the Estimation of Phenology Trends from Satellite Data. Chinese Geographical Science 29 (5), 756-767224, 560-73.

13. Shang, R., Liu, R., Xu, M., Liu, Y., Dash, J., & Ge, Q. (2018). Determining the Start of the Growing Season from MODIS Data in the Indian Monsoon Region: Identifying Available Data in the Rainy Season and Modeling the Varied Vegetation Growth Trajectories. Remote Sensing, 10, 122.

14. Shang, R., Liu, R., Xu, M., Liu, Y., Zuo, L., & Ge, Q. (2017). The relationship between the threshold-based and the inflexion-based approaches in extraction of land surface phenology. Remote Sensing of Environment, 199, 167-170.

15. Liu, R., Shang, R., Liu, Y., & Lu, X. (2017). Global evaluation of gap-filling approaches for seasonal NDVI with considering vegetation growth trajectory, protection of key point, noise resistance and curve stability. Remote Sensing of Environment, 189, 164-179.

16.左璐, 王焕炯, 刘荣高, 刘洋, 商荣. (2018). 基于不同光谱指数的植被物候期遥感监测差异. 应用生态学报. 29(02):599-606.

17.商荣, 刘荣高, 刘洋. (2015). 基于背景知识的全球长时间序列反照率反演. 地球信息科学学报. 11.

-------------------------------------------------------------------------------------------------------

主要获奖成果 The Main Achievements

1.  2018年 中国科学院 地理科学与资源研究所 优秀博士毕业生

2.  2018年 中国科学院 地理科学与资源研究所 所长奖学金

3.  2017年 博士国家奖学金

-------------------------------------------------------------------------------------------------------

科研项目 Research projects

1. 融合高分辨率遥感数据的森林扰动近实时监测算法研究,国家自然科学基金青年项目2022.01-2024.12,主持

2. 基于Landsat数据的森林扰动后碳汇恢复力评估与分析:以福建龙岩为例,福建省自然科学基金青项目2021.08-2024.08,主持

3. 基于InTEC模型的福建省森林碳汇计算与预测,福建省林业科技攻关项目课题,2022.01-2024.12,主持

4. 基于林龄结构的福建森林固碳潜力预测及风险评估,福建师范大学碳中和研究院开放基金项目,2022.09-2024.08,主持

5. Toward Near Real-time Monitoring and Characterization of Land Surface Change for the Conterminous USUSGS-NASA项目,2018.06-2020.08参加

6. 基于多源卫星遥感的高分辨率全球碳同化系统研究,国家重点研发计划, 2016.07-2018.06,参加

7. 基于现有知识的历史遥感数据回溯反演研究, 国家自然科学基金面上项目, 2013.06-2015.12,参加

 

数据更新至20221018

欢迎有遥感科学、地理信息科学、计算机科学、自然地理学背景的同学报考!