商荣副教授

发布者:孙杰发布时间:2021-09-02浏览次数:7232

------------------------------------------------------------------------------------------------------

基本信息 Basic information

    名:商荣

    称:副教授

硕导/博导:硕导

招生专业地图学与地理信息系统、自然灾害学

最高学位:博士

    位:福建师范大学地理科学学院

------------------------------------------------------------------------------------------------------

联系方式 Contact

通讯地址:福建省福州市大学城科技路1号福建师范大学旗山校区

邮政编码:350117

办公电话:0591-83465214    

电子邮箱:shangrong@fjnu.edu.cn

------------------------------------------------------------------------------------------------------

研究方向 Research Interests

植被遥感与碳中和、遥感大数据、地表变化动态监测

------------------------------------------------------------------------------------------------------

个人履历 Resume

  

2013.09-2018.06 中国科学院大学、地理科学与资源研究所、理学博士

2009.09-2013.06 武汉大学、资源与环境科学学院、理学学士

  

2021.07至今福建师范大学、地理科学学院、副教授

2020.12-2021.07 福建师范大学、地理科学学院、讲师

2019.01-2020.08 美国康涅狄格大学、资源与环境系、博士后

2018.06-2019.01 美国德州理工大学、地理系、博士后

-------------------------------------------------------------------------------------------------------

个人简介  Brief

商荣,福建师范大学地理科学学院、碳中和未来技术学院副教授,主要从事植被遥感与碳中和、遥感大数据、地表变化动态监测等方面的研究,近期工作主要聚焦在森林动态监测、参数反演与碳汇模拟等方面开发了多套全球适用的遥感数据处理和参数反演算法,生产了多套全球5001000米分辨率和中国30米分辨率遥感数据产品。主持了国家自然科学基金、福建省自然科学基金等项目5项,在The InnovationRSEISPRS P&RSAFMJAGIEEE TGRSGSIS等杂志上发表论文20篇,其中1篇入选ESI高被引论文。

-------------------------------------------------------------------------------------------------------

代表性论文 Selected Publications

第一或通讯作者(*表示通讯)

Shang, R., Chen, J.M., Xu, M., et. al. (2023). China’s current forest age structure will lead to weakened carbon sinks in the near future. The Innovation, 4(6), 100515.

Shang, R.*, Zhu, Z., Zhang, J., et. al. (2022). Near-real-time monitoring of land disturbance with harmonized Landsats 7–8 and Sentinel-2 data. Remote Sensing of Environment. 278, 113073.

Shang, R.*, Zhu, Z. (2019). Harmonizing Landsat 8 and Sentinel-2: A Time-series-based Reflectance Adjustment Approach. Remote Sensing of Environment, 235, 111439.

Shang, R., Liu, R., Xu, M., et. al. (2017). The relationship between the threshold-based and the inflexion-based approaches in extraction of land surface phenology. Remote Sensing of Environment, 199, 167-170.

Lin, X., Shang, R.*, Chen, J.M., et. al. (2023). High-resolution forest age mapping based on forest height maps derived from GEDI and ICESat-2 space-borne lidar data. Agricultural and Forest Meteorology, 339, 109592.

Li, W., Niu, Z., Shang, R.*, et. al. (2020). High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data. International Journal of Applied Earth Observations and Geoinformation, 92,102163.  

Zhang, J., Shang, R.*, Rittenhouse, C., et. al. (2021). Evaluating the impacts of models, data density and irregularity on reconstructing and forecasting dense Landsat time series. Science of Remote Sensing. 4, 100023.

Liang, L., Shang, R.*, Chen, J. M., et. al. (2023) Improved estimation of the underestimated GEDI footprint LAI in dense forests. Geo-spatial Information Science, https://doi.org/10.1080/10095020.2023.2286377.

Li, P., Shang, R.*, Chen, J.M., et al. (2024). Evaluation of five models for constructing forest NPP-age relationships in China based on 3121 field survey samples. Biogeosciences, 21, 625-639.

Xu, M., Shang, R.*, Chen, J. M., et. al. (2023) LACC2.0: Improving the LACC Algorithm for Reconstructing Satellite-Derived Time Series of Vegetation Biochemical Parameters. Remote Sensing, 15, 3277.

Qiu, D., Liang, Y., Shang, R.*, et. al. (2023) Improving LandTrendr Forest Disturbance Mapping in China Using Multi-Season Observations and Multispectral Indices. Remote Sensing, 15, 2381.

Qiu, S., Lin, Y., Shang, R.*, et. al. (2019). Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data. Remote Sensing, 11, 51.

Shang, R., Liu, R., Xu, M., et. al. (2018). Determining the Start of the Growing Season from MODIS Data in the Indian Monsoon Region: Identifying Available Data in the Rainy Season and Modeling the Varied Vegetation Growth Trajectories. Remote Sensing, 10, 122.

合作者

Liu, R., Shang, R., Liu, Y., et. al. (2017). Global evaluation of gap-filling approaches for seasonal NDVI with considering vegetation growth trajectory, protection of key point, noise resistance and curve stability. Remote Sensing of Environment, 189, 164-179.

Xu, M., Liu, R., Chen, J., Liu, Y., Shang, R., et. al. (2019). Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach. Remote Sensing of Environment, 224, 560-73.

Liu, Yang, Liu, R., Shang, R. (2022). GLOBMAP SWF: a global annual surface water cover frequency dataset during 2000–2020. Earth System Science Data. 14, 4505–4523.

Xu, M., Liu, R., Chen, J.M., Shang, R., et. al. (2022). Retrieving global leaf chlorophyll content from MERIS data using a neural network method. ISPRS Journal of Photogrammetry and Remote Sensing. 192, 66–82.

Liu, Y., Wu, C., …, Shang, R. (2022). Satellite Observed Land Surface Greening in Summer Controlled by the Precipitation Frequency Rather Than Its Total Over Tibetan Plateau. Earth’s Future. 10.

Xu, M., Liu, R., Chen, J.M., …,Shang, R., et. al. (2022). A 21-year time-series of global leaf chlorophyll content maps from MODIS imagery. IEEE Transactions on Geoscience and Remote Sensing. 60, 1–13.

Qiu, S., Zhu, Z., Shang, R., Crawford, C.J. (2021). Can Landsat 7 preserve its science capability with a drifting orbit? Science of Remote Sensing. 4, 100026.

-------------------------------------------------------------------------------------------------------

开源算法与数据 Open source algorithms and data

多源高分辨率时间序列遥感融合算法TRA: https://github.com/GERSL/TRA

高分辨率扰动近实时监测算法NRT-MONITORhttps://github.com/GERSL/NRT-MONITOR

全国1986-202230米分辨林龄数据产品https://figshare.com/articles/dataset/China_s_annual_forest_age_dataset_at_30-m_spatial_resolution_from_1986_to_2022/24464170

-------------------------------------------------------------------------------------------------------

获奖 Awards

2023年 “竞明地理科学教育基金”青年学者奖教金

-------------------------------------------------------------------------------------------------------

科研项目 Research projects

1. 海南热带雨林的碳汇稳定性及其调控机制研究国家自然科学基金联合项目课题2024.01-2027.1265万,主持

2. 融合高分辨率遥感数据的森林扰动近实时监测算法研究,国家自然科学基金青年项目2022.01-2024.1230万,主持

3. 基于Landsat数据的森林扰动后碳汇恢复力评估与分析:以福建龙岩为例,福建省自然科学基金青创项目2021.08-2024.088万,主持

4. 基于InTEC模型的福建省森林碳汇计算与预测,福建省林业科技攻关项目课题,2022.01-2024.1235万,主持

5. 基于林龄结构的福建森林固碳潜力预测及风险评估,福建师范大学碳中和研究院开放基金项目,2022.09-2024.0825万,主持

6. Toward Near Real-time Monitoring and Characterization of Land Surface Change for the Conterminous USUSGS-NASA项目,2018.06-2020.08,参加

7. 基于多源卫星遥感的高分辨率全球碳同化系统研究,国家重点研发计划, 2016.07-2018.06,参加

8. 基于现有知识的历史遥感数据回溯反演研究, 国家自然科学基金面上项目, 2013.06-2015.12,参加

 -------------------------------------------------------------------------------------------------------

指导学生 Supervisions

研究生

2020级:梁丽娟(博士)、邱德安(硕士)

2021级:林旭东(硕博连读)

2022级:李彭(博士)、梁云健(硕士)

2023级:杨子翼(硕士)

本科生

2018级:马培瑜(毕设)、张舒研(毕设)

2019级:杨文财(毕设)、卓子濠(毕设)

2020级:龚梓彤(毕设、比赛)、董嘉琪(基地班导师、毕设)、曾祥婷(基地班导师)、陈文婷(毕设、大创、比赛)、徐晟玮(大创、比赛)

2021级:付鑫悦(基地班导师)、吴佳敏(基地班导师)

2022级:林莹铮(基地班导师)、谢雨蝶(比赛)、欧洲(比赛)

指导学生获奖

2022ESRI大赛:龚梓彤(三等奖)、吴佳敏(三等奖)、徐晟玮(优胜奖)、陈文婷(优胜奖)

2023ESRI大赛:付鑫悦(二等奖、三等奖)、吴佳敏(二等奖)





数据更新至2024418

欢迎有遥感科学、地理信息科学、自然地理学、自然灾害学、计算机科学背景的同学报考!